
Deborah Agarwal (UCB/LBL) 
Catharine van Ingen (MSR)

Berkeley Water Center
22 October 2007



Over the past year, we’ve been 
experimenting using data cubesexperimenting using data cubes  
to support carbon-climate, 
hydrology, and other eco-
scientistsscientists
◦ While the science differs, the data 

sets have much in common
◦ The cube is a useful tool in the data 

l i i lianalysis pipeline
Along the way, we’ve wondered 
how to build toward a “My Cube” 
serviceservice
◦ Empower the scientist to build a 

custom cube for a specific analysis

http://bwc.berkeley.edu/
http://www.fluxdata.org/



A data cube is a database specifically 
for data mining (OLAP)
◦ Initially developed for commercial 

needs like tracking sales of Oreos g
and milk

◦ Simple aggregations (sum, min, or 
max) can be pre-computed for speed

◦ Hierarchies for simple filtering with 
drilldown capabilityp y

◦ Additional calculations (median) can 
be computed dynamically or pre-
computed

◦ All operate along dimensions such as 
time, site, or datumtypet e, s te, o datu type

◦ Constructed from a relational 
database

◦ A specialized query language (MDX) 
is used

Client tool integration is evolvingClient tool integration is evolving
◦ Excel PivotTables allow simple data 

viewing
◦ More powerful analysis and plotting 

using Matlab and statistics software

Daily Rg 2000-2005 72 sites, 276 site-years



What we start with



The era of remote 
i h dsensing, cheap ground-

based sensors and web 
service access to agencyservice access to agency 
repositories is here

Extracting and deriving theExtracting and deriving the 
data needed for the science 
remains problematic 

Specialized knowledge
Finding the right needle 
i th h t kin the haystack



What is the role of photosynthesis in 
global warming? 
◦ Measurements of Co2 in the atmosphere 

show 16-20% less than emissions 
ti t di testimates predict

◦ Do plants absorb more than we expect? 
Communal field science – each principle 
investigator acts independently to prepare 
and publish data. p
496 sites world wide organized into 13 
networks plus some unaffiliated sites
◦ AmeriFlux: 149 sites across the Americas
◦ CarboEuropeIP: 129 sites across Europe

Data sharing across investigators justData sharing across investigators just 
beginning
◦ Level 2 data published to and archived at 

network repository
◦ Level 3 & 4 data now being produced in 

cooperation with CarboEuropeIP and servedcooperation with CarboEuropeIP and served 
by BWC TCI

Total fluxnet data accumulated to date 
~800M individual measurements

6

http://www.fluxdata.org

http://gaia.agraria.unitus.it/cpz/index3.asp 



When we say data we mean 
predominantly time series data

T SOIL
p y
◦ Over some period of time at some time 

frequency at some spatial location.
◦ May be actual measurement (L0) or derived 

quantities (L1+)
(Re)calibrations are a way of life

T AIR

Onset of 
(Re)calibrations are a way of life. 
◦ Various quality assessment algorithms 

used to mark and/or correct spikes, drifts, 
etc. 

Gaps and errors are a way of life

photosynthesis

2000Gaps and errors are a way of life. 
◦ Birds poop, batteries die, and sensors fail. 
◦ Gap filling algorithms becoming more and 

more common because a regularly spaced 
time series is much simpler to analyze 1000
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When we say ancillary data, we mean non-
time series data
◦ May be ‘constant’ such as latitude or longitude
◦ May be measured intermittently such as LAI (leaf 

cross-sectional area) or sediment grain size 
distribution

◦ May be a range and estimated time◦ May be a range and estimated time
◦ May be a disturbance such as a fire, harvest, or 

flood
◦ May be derived from the data such as flood
◦ Not metadata such as instrument type, derivation yp ,

algorithm, etc. 
Usage pattern is key
◦ Constant location attributes or aliases
◦ Time series data (by interpolating or “gap filling” 

i l lirregular samples
◦ Time filters (short periods before or after an 

event or sampled variable)
◦ Time benders (“since <event>” including the 

deconvolution of closely spaced events a firedeconvolution of closely spaced events a fire



Why use a datacube?



Data 
Gathering

Discovery 
and 
Bro sing

Science 
Exploration

Domain 
specific 
anal ses

Scientific 
Output 

Browsing analyses

“Raw” data 
includes sensor

“Raw” data 
browsing for

“Science 
variables” and

“Science 
variables”

Scientific 
results viaincludes sensor 

output, data 
downloaded 
from agency or 
collaboration 
web sites

browsing for 
discovery (do I 
have enough 
data in the right 
places?), 
l (d

variables  and 
data summaries 
for early science 
exploration and 
hypothesis 
testing Similar

variables  
combined with 
models, other  
specialized 
code, or 
statistics for

results via  
packages such 
as MatLab or 
R2. Special 
rendering 
package suchweb sites, 

papers 
(especially for 
ancillary data

cleaning (does 
the data look 
obviously 
wrong?), and 
light weight

testing. Similar 
to discovery and 
browsing, but 
with science 
variables 

statistics for 
deep science 
understanding. 

package such 
as ArcGIS. 

Paper
preparation.light weight 

science via 
browsing 

computed via 
gap filling, units 
conversions, or 
simple equation. 

p p



Summary data 
products (yearlyproducts (yearly 
min/max/avg) almost 
trivially
Simple mashups andSimple mashups and 
data cubes aid 
discovery of available 
datadata
Simple Excel graphics 
show cross-site 
comparisons and 
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Data cleaning never 
ends
◦ Existing practice of 

running scripts onrunning scripts on 
specific site years often 
misses the big picture
C ti t lib ti◦ Corrections to calibration



Building our datacube family 



We’ve been building cubes 
with 5 dimensions tim

e

with 5 dimensions
◦ What: variables
◦ When: time, time, time

Wh ( ) l i

W
he

n:
 t

◦ Where: (x, y, z) location or 
attribute where (x,y) is the site 
location and (z) is the vertical 
elevation at the site

What: variables
elevation at the site. 

◦ Which: versioning and other 
collections

◦ How: gap filling and otherHow: gap filling and other 
data quality assessments
Driven by the nature of the data – space and time 

are fundamental drivers for all earth sciencesare fundamental drivers for all earth sciences. 



We’ve been including a few computed members 
in addition to the usual count sum minimumin addition to the usual count, sum, minimum 
and maximum 
◦ hasDataRatio: fraction of data actually present across 

time and/or variables/
◦ DailyCalc:  average, sum or maximum depending on 

variable and includes units conversion
◦ YearlyCalc: similar to DailyCalc

RMS or sigma: standard deviation or variance for fast◦ RMS or sigma: standard deviation or variance for fast 
error or spread viewing

Driven by the nature of the analyses – gaps, errors, 
conversions, and scientific variable derivations 
are facts of life for earth science data. 



Core variables or 
datumtypes

Non-core or extended 
datumtypes

Ancillary data treated 
as time-series data or 
filtfilters. 
Note that the gap 
filling or interpolation 
algorithm is likely g y
domain-specific. 

Daily and yearly value 
calculation, data 

Hierarchies to solve 
very large namespace 

Special calculation 
such as potential

counts, min/max 
values

navigation. 
Note that most science 
cannot leverage cube 
aggregations here

evapotranspiration or 
bedload sediment 
transport.

aggregations here.



Core time hierarchies. 
Includes simple 

l d t

“tunable” time filters 
such as morning, 
ft i ht

Time period definition 
determined by time-

i i bl (calendar, water year, 
MODIS week. 

afternoon, night,
winter; each defined 
by a start/stop at a 
hierarchical level. 

series variable (eg. 
PAR-day determined by 
photosynthetic activity)

Selectable hierarchy 
top and bottom: 

Time folding based on 
data value (eg. after a 

decade, year, month, 
day

rain) or ancillary data 
value (eg. after a fire).

“time is not just another axis”



Site (location) 
presented by friendly 

d l t bl

Selectable site 
hierarchies for 
i l i ti

Site selection 
determined by time-

i i bl (name and selectable 
constant site ancillary 
data such as latitude 
band or 

simple navigation 
(ala variable) or 
aggregation (eg. 
state or HUC). 

series variable (eg. 
minimum temperature)  
or non-constant 
ancillary variable (eg. 

vegetationtype. 
) y ( g

above a soil nitrogen 
threshold). 

No offset. Either one Geo-spatial Vertical profiles
vertical location or 
aggregated over the 
vertical. 

calculations



No version (dataset 
chosen when cube is 
b ilt)

Selectable site 
hierarchies for 
i l i ti

Datasets used to 
include/exclude 
l ti b tbuilt). simple navigation 

(ala variable) or 
aggregation (eg state 
or HUC). 

location subsets, 
datumtype subsets, or 
the same data at 
different processing ) p g
levels or measurement 
granularity (eg USGS 
daily vs 15 minute 
stream flow)stream flow). 



Ignore any quality 
metric

Simple statistics, 
gap-filling, spike 
d t ti l l d lt

??????

detection, level delta 
and drift checks.
Quality dimension to 
allow visualizationallow visualization 
and filtering

This is clearly where we’ll be spending  
more time!



Data 
Gathering

Discover y 
and

Science 
Exploration

Domain 
specific

Outputs
Gathering and 

Browsing
Exploration specific 

analyses

Automation of Data cube Data cube My calculation/ Interfaces toAutomation of 
data ingest.

d d

Data cube.

Sh ld b

Data cube 
calculated 
dimensions/ 
aggregations.

S

My calculation/ 
My cube/My 
database.

“S l

Interfaces to 
commercial 
products and 
shareware. 

Sh ld bAs standards 
emerge, sensor 
data acquisition 
and ingest will 
become easier.

Should be 
reasonably 
straight forward 
to generalize. 
(Data mining

Some
conversions are 
simple. Some 
exploration is 
just browsing

“Special purpose 
– may be hard to 
do given the 
base database/ 
datacube

Should be 
reasonably 
straight forward 
to generalize. 
(Web servicesbecome easier. (Data mining 

could be 
interesting here)

just browsing 
with different 
variables. 

datacube
technologies. 
(Workflow 
technologies 
might help here)

(Web services 
and 
Collaborative 
tools help here)
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The saga continues at 
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