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Abstract— The combination of low-cost sensors, low-cost commodity computing, and the Internet is enabling a new 
era of data-intensive science. The dramatic increase in this data availability has created a new challenge for scientists: 
how to process the data. Scientists today are envisioning scientific computations on large scale data but are having 
difficulty designing software architectures to accommodate the large volume of the often heterogeneous and 
inconsistent data. In this paper, we introduce a particular instance of this challenge, and present our design and 
implementation of a MODIS satellite data reprojection and reduction pipeline in the Windows Azure cloud 
computing platform. This cloud-based pipeline is designed with a goal of hiding data complexities and subsequent 
data processing and transformation from end users. This pipeline is highly flexible and extensible to accommodate 
different science data processing tasks, and can be dynamically scaled to fulfill scientists’ various computational 
requirements in a cost-efficient way. Experiments show that by running a practical large-scale science data processing 
job in the pipeline using 150 moderately-sized Azure virtual machine instances, we were able to produce analytical 
results in nearly 90X less time than was possible with a high-end desktop machine. To our knowledge, this is one of 
the first eScience applications to use the Windows Azure platform. 
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1. Introduction  
The combination of low-cost sensors, low-cost commodity computing, and the Internet is enabling a new era of 
data-intensive science. Many scientists are envisioning analysis and synthesis computations that can easily go 
beyond tera-scale or even peta-scale data capabilities. For example, remote sensing is one of the factors 
transforming environmental science today. Emerging inexpensive ground-based sensors are enabling scientists to 
make field measurements of science variables at more locations with more spatial and temporal granularities. 
Satellites and other remote sensing technologies can at times provide a second source of measurements to the data 
generated by the ground sensors, and at other times serve as the single source of data for those parts of the Earth 
that are not amenable to ground-based sensors. Large-scale environmental data is necessary to investigate global-
scale phenomena such as global warming. 

Given these remarkable technological improvements, scientists can increasingly find the sensor data they need 
on the Internet, or they can design and deploy a custom software architecture to generate the sensor data they 
need. But now scientists are facing with a new challenge: how to process the data. First, the source data from 
different locations or measurements can be very heterogeneous in data format, resolution, time frame, confidence, 
etc., making it difficult for scientists to use directly in their research. Second, deriving from this first issue, the 
best algorithms can often not be determined until the raw data is actually available, because the algorithms 
designed under ideal situations often do not account for the less-than-ideal raw data. Third, the inherent nature of 
the scientific hypotheses and experiments often require a scale beyond which the scientists have previously 
encountered. A scientist’s commodity workstation will quickly be overwhelmed for non-trivial computations over 
large datasets. Purchasing larger computational platforms (i.e., clusters) – although arguably the norm – is 
generally not cost-effective even if the money is available, as they quickly become outdated and especially if 
additional system administrators must be hired by the domain scientists just to manage the infrastructure. 
Obtaining an account and allocation on national-scale supercomputing centers can be pursued but frequently 
offers a particular programming and debugging environment that is not as flexible as a local option, and user jobs 
can sometimes require a potentially long wait in a queuing system. 

This paper is motivated by a particular instance of this problem, as we attempted to integrate data from 
ground-based sensors with the Moderate Resolution Imaging Spectroradiometer (MODIS) [1][2] satellite data. 
Designed to improve the understanding of global dynamics and processes occurring on the land, oceans, and 
lower atmosphere, the MODIS data is generated by the Terra and Aqua satellites and is a viewing of the entire 
Earth’s surface in 36 spectral bands, at multiple spatial resolutions, generated every 1-2 days. There are a large 



number of research activities that are using the MODIS data to explore and validate scientific hypotheses (e.g., see 
[3] for an overview with regard to vegetation and [4] for an overview with regard to ocean science). We 
encountered all three issues identified above, particularly the inability to practically compute such data 
transformation and integration on a scientist’s desktop machine. As for our example, even a high-end desktop 
machine with Quad-core processing would require tens of months of continuous processing to compute our result 
(details are provided later in this paper). Furthermore, our desire to expose this as a Web service for the broader 
environmental research community could not possibly be implemented if we used a desktop or cluster based 
approach. 

In this paper, we describe our experiences designing and implementing our MODIS data integration and 
transformation techniques by using cloud computing, specifically the Windows Azure platform [5]. To our 
knowledge, this is one of the first science applications to use the Windows Azure platform. The contributions of 
this paper are: 

 
• We present a novel approach to “reproject” the input data into timeframe- and resolution-aligned, and 

uniform geographically formatted data.  
• We present a novel “reduction” technique to derive important new environmental data through the 

integration of satellite and ground-based data.  
• We describe how we leveraged the Windows Azure abstractions and APIs to accomplish the reprojection 

and reduction steps.  
• We present our general observations and lessons learned as we explore how emerging common 

cyberinfrastructure such as Windows Azure can be leveraged by resource-constrained domain scientists. 
 
While cloud computing is still in its infancy and many challenging open issues remain, we believe that the 

Windows Azure platform is a compelling approach for large-scale scientific explorations, as, for example, we 
gained a factor of 90x speedup over a high-end desktop machine when running 150 Azure virtual machine 
instances for parallel data reprojection tasks. Although the project was developed specifically for MODIS data 
processing, we believe that the experience we gained and lessons learned from implementing this architecture in 
Windows Azure can be applied to a broad range of other imaging eScience applications. 

The remainder of this paper is structured as follows. Section 2 discusses existing use of cloud computing for 
eScience. Section 3 gives an overview of Windows Azure. In section 4 we introduce the background of our 
project. Section 5 introduces the implementation details of our pipeline architecture. Section 6 shows the 
evaluation results of the pipeline. In section 7 we conclude our work with discussions on our experience with 
Windows Azure and some general observations and unresolved issues about leveraging cloud computing for 
eScience. 

2. Existing Use of Cloud Computing for eScience 
Commercial cloud computing platforms such as Amazon’s Elastic Compute Cloud (EC2 [6]), Google App Engine 
[7], and Microsoft’s Windows Azure have been created to offer highly flexible, scalable, and on-demand 
computational, storage, and networking resources for large-scale computing tasks. It can be argued that the 
emphasis of these commercial clouds is at least perceived to be for “business applications”, so it is not clear how 
readily such commercial clouds can be used for science. We believe such platforms have the potential to be a cost-
efficient computing platform for domain scientists, particularly due to the economies of scale and increasing 
market competition, which will drive the costs down. Furthermore, the pay-as-you-go manner in the business 
model of cloud computing means scientists no longer need any specific authorization for using powerful 
computing resources and there is no large up-front cost. 

The number of Cloud-based science applications has been increasing. Evangelinos and Hill pursue the use of 
EC2 for Atmospheric-Ocean models [8]. The CARMEN e-science project is designing a system to allow 
neuroscientists to share, integrate and analyze data, and has been recently expanded to include cloud computing 
[9]. Keahey et. al. describe early experiences to deliver EC2-like cycles to scientific applications [10]. The 
feasibility of executing workflows in the cloud is being studied, particularly for the Montage application [11]. 
(Montage is the subject of another cloud-based analysis in [12]). Analysis of gene expression data and microarrays 
is being pursued in public clouds [13]. Other studies are beginning to appear that address the performance of 
science applications in the cloud [14][15]. While these efforts and others are pioneering the use of science 
applications in the cloud, we believe that there are many unresolved issues on how, in particular, domain scientists 
can best leverage and exploit cloud computing. We believe our cloud-based environmental data analysis reported 



in this paper complements this existing research by reporting the first experiences using Windows Azure for 
eScience. 

3. Windows Azure overview 
Windows Azure was announced by Microsoft as its cloud computing service platform in Microsoft Professional 
Developers Conference (PDC) 2008. Early access in the Community Technical Preview phase started from spring 
2009. Commercial availability of Windows Azure has started since January 2010.   

Windows Azure presents a .NET-based hosting platform that is integrated into a virtual machine abstraction. 
Thus, developers who are familiar with .NET application development can take advantage of this homogeneous 
cloud environment and develop applications for Azure just like ordinary .NET applications by using Visual 
Studio. In contrast to EC2, Windows Azure does not expose the virtual machine abstraction directly to an end-
user. In EC2, users can customize the environment for their particular application by installing particular software 
or by purchasing particular machine images. Windows Azure achieves flexibility via the wide range of language 
supports other than the .NET framework, such as Java and PHP. Windows Azure supports popular Internet 
standards and protocols including SOAP, REST, XML, etc. 

In Windows Azure, the virtual machine instances can be classified as two different roles: the web service 
hosting instances called Web Roles and the computational instances called Worker Roles. Developers can specify 
the number of instances for both roles at the deployment of their application, or can dynamically adjust the 
number of instances at runtime.  

Besides the computational resources provision, Windows Azure also provides three types of cloud storage 
services: 

• Blob service, which provides durable and scalable storage service for large data items; 
• Queue service, which provides a basic reliable queue model to allow asynchronous task dispatch and to 

enable service communication; 
• Table service, which provides the structured storage in the form of tables and supports simple queries on 

partitions, row keys, and attributes. 
The key aspect of cloud storage is that it is accessible via any virtual machine in Azure (with the proper 

authentication/authorization). Therefore, while there is local storage available to a particular computation, it is 
assumed that one of the cloud storage services will be used if the data is to be shared across virtual machine 
instances. 

4. MODIS Satellite Data Processing 
As mentioned earlier, the MODIS data is generated by the Terra and Aqua satellites and is a viewing of the entire 
Earth’s surface in 36 spectral bands, at multiple spatial resolutions, generated every 1-2 days. MODIS provides 
various biophysical variables (e.g. gross carbon uptake, albedo etc) with spectral irradiance ranging visible, near 
infrared, infrared and thermal regions of the electromagnetic spectrum. It has been an important scientific source 
and can be applied to many environmental studies from local to global scale. The MODIS data is made available 
every day over the Internet on multiple FTP sites. 

There are three main barriers for scientists to obtain the L2/L3 MODIS data and apply analyses on them to 
produce scientific results in their research: 

Data Collection: The L2/L3 data is separated into 3 main groups: Atmosphere, Land, and Ocean. Each data 
group includes a number of different data products, which are published and maintained on different FTP sites. 
For each day the L2/L3 data are stored in tens to hundreds of separate pieces of files and the corresponding 
metadata such as earth covering boundaries, observing time, etc. are kept in a different place. Although there is a 
web portal [16] for data download by queries (geographic area, time period, data products, etc.), it only supports 
queries for a very limited data size. If a scientist wants to download a larger size of the L2/L3 data, he/she needs to 
download them directly from the FTP sites, which is almost infeasible given the data size is large and no tools are 
available for metadata query in order to decide which set of data files to download. 

Data Transformation: Data products from different groups are stored in different geographical project types. 
For example, atmosphere data products are directly derived from the MODIS instrument and use a swath space 
and time system that follows the satellite, while the land data products have already been preprocessed and use a 
gridded space and time coordinates called the sinusoidal tiling system. The reprojection from one type to the other 
involves very complex data processing algorithms, and requires in-depth programming skills which are not 
common to the domain scientists. A number of tools [17][18] have been developed by the community to perform 
the reprojections. However, these tools only work on a single data file as input and lack support for 



processing/producing a customized area and time period of data. Thus, these tools are of limited value when 
scientists need to synthesis a large spatial and time scope of data. Furthermore, data from different products can 
have different time frames and space resolutions, which also need to be unified before scientists could conduct 
scientific computation on them. This data heterogeneity makes it extremely difficult for scientists to use data from 
different products directly in their analytical processes, and a main data transformation step is required to produce 
timeframe- and resolution-aligned, and uniform geographically projected data. 

Data Management: To date, most scientific research involving the MODIS data are limited to a small 
geographical area. It is not feasible to conduct scientific research in continental or global scope not only because 
of the above two barriers, but also because the data management cost would become overwhelming. For example, 
the research reported in this paper is motivated in part by a group of biometeorologists needing to conduct a 
MODIS data synthesis involving nine data products covering the whole US continent in a 10 year time frame. 
Table I contains a description of the nine data products, including the total size of the L2/L3 data the scientists will 
have to manage. #Source Data Files indicates the total number of source data files that need to be downloaded for 
each data product for the whole US over 10 years, and Data Size indicates the size of each data product that needs 
to be downloaded from the multiple FTP sites. Prior to the research reported in this paper using Windows Azure, 
these scientists would first need to query the metadata to decide the subset of source data files which covers the 
US area, download all the source data files to their local storage, reproject the 5 Swath type products into 
Sinusoidal type, unify the timeframe and space resolution of all 9 data products, and finally perform scientific 
computation on the data. This process would need to be managed and performed manually by these scientists. 
This process as a whole is very time-consuming, tedious and error-prone. 

 MO(Y)D04L2 MO(Y)D05L2 MO(Y)D06L2 MO(Y)D07L2 MCD12Q1.005 
Data Group Atmosphere Atmosphere Atmosphere Atmosphere Land 
Project Type Swath Swath Swath Swath Sinusoidal 

#Source Data Files 65K 130K 130K 130K 150 
Data Size 85GB 500GB 2TB 850GB 13GB 

 MCD15A2.005 MCD43B3.005 MO(Y)D11_L2.005 MO(Y)D13A2.005  
Data Group Land Land Land Land  
Project Type Sinusoidal Sinusoidal Sinusoidal Swath Total 

#Source Data Files 7K 7K 113K 3K 585K 
Data Size 13GB 110GB 337GB 40GB 3.9TB 

 
Even if the above process were manageable and undertaken by scientists, there is still a significant challenge in 

finding/obtaining the necessary computational capacity to perform the analysis. An entire end-to-end 
computational run for the US continent over 10 years would require tens of thousands of CPU hours of continuous 
processing. Clearly, the MODIS data presents unprecedented opportunity for scientific exploration, but there 
remain significant practical issues that prevent such discoveries, particularly for resource-constrained scientists. 

Therefore, to help these and other scientists, we have designed and implemented a MODIS data reprojection 
and reduction pipeline in the Windows Azure platform. We choose to leverage cloud computing to provide on-
demand computational resources and highly scalable infrastructure for our data processing pipeline based on the 
observation that the MODIS data files can be processed largely in parallel. Thus we can map the reprojection or 
scientific computation tasks on these data files to a large number of parallel computational instances in the cloud. 
Through the implementation of this pipeline, our goals have been to provide the following main contributions for 
scientists pursuing reprojection/reduction of the MODIS data: 

• Reduce or eliminate the issues involved in data collection, transformation, and management processes by 
constructing an automatic data processing and management framework in Windows Azure. The scientist 
can make requests to the pipeline through a web portal by specifying their data requirements, which will 
then be automatically processed by the pipeline to collect, reproject, integrate the source data, and then 
perform analytical computation on them. The scientist will receive email notifications on the start and 
completion of the requested data processing job. The completion notification email also includes a single 
download link to the data result package. During the execution, scientists can monitor the status detail of 
each single task and view execution logs at real-time through the web portal. 

• Leverage cloud computing to provide a highly-flexible and scalable data processing pipeline architecture. 
The number of computational instances in the cloud can be adjusted at runtime to support different scales 

TABLE I.    DATA PRODUCT REQUIREMENTS FOR US CONTINENT OVER 10 YEARS  

 



of data processing tasks, thus to accommodate continental or even global scope of MODIS scientific 
research. 

• Scientists can specify a custom reduction step, in which scientists will perform synthesis and analyses 
computation on the unified data produced after the reprojection step, and will usually reduce these data 
into a much smaller set of final science data results. We enable our scientists to specify different 
reduction algorithms in their own tools such as compiled MATLAB executables or other command-line 
tools. They can be uploaded through the request submission web page and then executed by the 
computing instances in Windows Azure. 

We believe that this reprojection and reduction service of the MODIS data is desired by a number of scientists 
today who would otherwise be unable to utilize the MODIS data. Furthermore, we believe our architecture can 
also be applied for the processing of data other than the MODIS remote sensing data. 

5. Pipeline Implementation 

5.1 Pipeline Stage Overview 
Our MODIS data reprojection and reduction pipeline consists of three main stages as shown in Figure 1. Each 
stage is an independent component and addresses a specific type of data-centric tasks: 

Data collection stage: At this stage the data collection model assembles all the required source data according 
to a specific user request. Each task first determines and then downloads all of the necessary source files for the 
specified target images. Azure tables are used to hold the metadata describing the FTP site, the remote file 
structure, and geographical information about the source files. Once the metadata for the specified source files are 
queried from the meta-tables, the working Azure instance first checks whether the source files have already been 
downloaded and exist in the Data Repository in Azure blob storage (as explained and discussed later). If they are 
already in the data repository, the Azure computing instance will directly copy them from the blob storage to its 
local disk storage for the reprojection computation. If they don’t exist in the data repository, then the instance will 
have to download the files from the FTP sites to local storage as for the reprojection, and then also upload them to 
the data repository to be reused for future computations. When all the source data is available on local storage, the 
instance will then initiate the reprojection computation for that target. 
 
 

 

 
Figure 1. Pipeline stage overview 



Reprojection stage: This stage performs reprojection tasks on the source data collected in the first stage. A 
single task produces exactly one reprojected target image. While the total number and size of data processing 
requirements for the whole computation request can be substantial (e.g. compute reprojected data on US continent 
for a whole year), the computation requirement for a single task is relatively small, as the whole request can be 
separated into a large number of embarrassingly parallel small tasks. Typically, a single reprojection task requires 
a collection of 3-4 source data files, each in the size of several MBs to tens of MBs. The reprojection computation 
can be finished in several minutes on a single Azure computing instance. 

Like the source data, the reprojected data can also be reused across multiple requests. Once a single 
reprojected image has been computed and uploaded to the data repository, it will be cached for future reuse. 
Therefore, when a computing instance receives a new reprojection task, it will first check whether the result data 
has already been computed before. If the target data already exists in the data repository, it simply aborts the task 
and uses the result in the data repository. 

Analysis and reduction stage: The (optional) reduction stage works on the data produced by the reprojection 
stage to perform custom analysis algorithms as specified by the scientists. Each task may take any number of input 
source files (specified as different aggregation types by scientists), and produces a number of reduced image files. 
This flexibility and extensibility of choosing customized analysis tools has been a major advantage of our 
architecture to provide support for a broad range of scientific applications, rather than a hard-coded one. It is very 
convenient for domain scientists to update or change the algorithms for the analysis across multiple requests, 
which can be especially efficient and helpful in scientific code development phase. Based on our experience, it has 
saved us a lot of time on system maintenance as scientists may go through a large number of iterations during the 
development of scientific algorithms without the assistance of a system administrator. 

Aside from this flexibility, our current implementation places some limits on the reduction algorithm that is 
uploaded by the scientist. First, the reduction tool must be a command line executable and all custom libraries 
other than the .NET framework must be included with the tool. Second, since data transfers between the local disk 
storage of computing instances and the data repository in Azure blob storage are automatically managed by our 
software framework, the scientist will need to specify the local paths in his/her code for the input and output data 
images or just use the given default local input and output paths. After the reduction algorithm is executed, the 
output data files will be uploaded to the data repository in Azure blob storage, and a notification email will be sent 
to the requester which includes the download link for the results. 

5.2 Data Repository 
The data repository in Azure blob storage serves both as the long-term and short-term cache for all sharable data, 
including the source data, intermediate reprojected data, and final result data. All these data are stored as blobs and 
grouped in different blob containers. Users don’t need to worry about the details such as semantic groupings and 
locations of their data. Using their request IDs, they can simply retrieve and manage their data through the web 
portal.  

As discussed above, both the source data downloaded from FTP sites and the intermediate reprojection results 
are cached in the data repository to enable reuse across multiple requests. This mechanism can save network 
bandwidth by avoiding downloading the same source data for multiple times, and can save large amounts of CPU 
hours which would otherwise be used to re-compute the same reprojection results. However, we need to be aware 
that current commercial cloud computing platforms not only impose charges on network bandwidth and 
computing resource usage, but also charges on persistent storage usage. Therefore, whether it is a right decision to 
use data caching will depend on the nature of the scientific applications. Especially, tradeoffs need to be made 
between the cost of storage usage of data cache and the cost of re-downloading the source data and re-computing 
the results every time. For the application we are currently working on, it would be beneficial to maximize reuse 
of data, since it would take a large amount of CPU hours to reproduce the data results every time. A detailed 
discussion and case study on this issue can be found in [12].         

An important design aspect that has not been incorporated into the implementation to date is security with 
regard to intermediate data results, final data results, and uploaded reduction algorithms. We plan to implement 
fine-grained access control for this important data in a future version of the pipeline by leveraging the .NET 
Access Control Service [19] in the Windows Azure platform. 

5.3 Task Scheduling 
We based our task scheduling and execution model on the Azure queue services, which is a loosely coupled 
message dispatching and communication service. Each pipeline stage has a specific number of Azure computing 
instances which keep fetching and executing tasks from the corresponding task queue. A service manager is 



running in the pipeline to accept user requests from the request queue. It then parses and separates the request into 
a number of parallel tasks, and dispatches them to the different task queues. The service manager also monitors 
and updates the status of each single task during the computation, and will take necessary correction actions when 
a task runs into a faulty state (discussed in the next part). We also provided a job monitoring web service on the 
web portal so that scientists can look up the status of their requests in real-time.    

Figure 2 shows the implementation detail of the reprojection stage only. A typical reprojection computation 
includes the following steps: 

1. The scientist sends a reprojection request through the web portal to the service request queue.  
2. The service manager fetches the request from the request queue, parses it into a number of parallel data 

collection and reprojection tasks. It then dispatches the tasks to the data collection and reprojection task queues. 
At the same time, it also registers the information of this new request and status of all single tasks in a service log 
table. It then starts monitoring and updating the status of the reprojection request. 

3. Each of the computing instances in the reprojection stage keeps fetching and executing the reprojection 
tasks from the task queue. When the worker gets a task from the queue, it first parses the information for that 
single reprojection task, queries a number of meta-tables for the corresponding source data items, and then 
downloads those data files from the blob storage into temporary local storage. It then reprojects the source data 
files into intermediate data results in the format as specified by the user request. When the computation is done, it 
uploads the result to the data repository, and then updates the information for that task in the service log table.  

4. When all tasks for a specific request are finished, the service manager will send the requester a notification 
email which includes the download link to the result data package.  

5. When the scientist receives the notification email, he/she can either download the reprojected data to a local 
machine and perform further analytical computation locally, or specify another reduction request to do analytical 
computation on that set of data in Windows Azure. However, in that case, it would be more convenient for the 
scientist to combine the reprojection and reduction requests into a single request.  

The task scheduling for the data collection and reduction stages are similar to the reprojection stage, thus we 
will not introduce their implementation details here. 

 

 

5.4 Fault Tolerance 
Fault tolerance is an important and even a critical part of many large-scale distributed systems. In our architecture, 
the service manager keeps tracking the status of each single task and takes fault-tolerant actions when necessary. 
If a computing instance crashes during execution or the task running on that instance doesn’t finish after a default 
time limit, the same task will be sent to the task queue again and restarted by another instance. However, if that 
task still fails after totally 3 retries, it is most likely that the failure is caused by some intrinsic errors such as 
reprojection on crashed source data files. Thus the service manager will give up the retry and indicate the task as a 

Figure 2. Task scheduling in the reprojection stage 



failure. Usually, scientists will request for a computation job which consists of a large amount of tasks, and a 
single failed task doesn’t necessarily mean the whole final results will become invalid.  
 

6. Evaluation 
We evaluated the performance of running the pipeline stages in Windows Azure using an account which has a 
quota of 200 computing instances. Of all 3 stages, the reprojection stage is most compute- and data-intensive, and 
also involves the most frequent usage of all 3 types of Azure storage services (blob, queue, and table service), thus 
we choose the reprojection task processing for our performance and scalability test. 

6.1 Single instance performance 
We first compare the performance of a single computational instance in Windows Azure with that of a local high-
end desktop machine. Table II shows the capacity of the desktop machine we used for the test and the equivalent 
capacity of a single small-size Azure computing instance. We did our experiment by executing totally 45 different 
reprojection tasks on both the desktop machine and a single Azure instance. Each reprojection task involves the 
following operations: 1 Azure table query to get the list of source data files that are required for the given 
reprojection task; 4~8 table queries for the metadata of each source data file; downloading all source data files 
from Azure blob storage to local storage; performing reprojection computation on downloaded source data and 
generating the reprojected data. 

TABLE II.    DESKTOP MACHINE AND AZURE INSTANCE CAPACITIES 

TABLE III.    REPROJECTION EXECUTION STATISTICS 

a) MOD04L2 

 Avg. TW Avg. TC Avg. TR 
Desktop 39.1s 9.2s 29.9s 

Azure Instance 82.7s 14.9s 67.7s 
Perf. Ratio 2.1 1.6 2.3 

SD(Perf. Ratio) 0.21 0.79 0.13 
 

b) MOD06L2 

 Avg. TW Avg. TC Avg. TR 
Desktop 169.5s 65.8s 103.7s 

Azure Instance 267.5s 52.6s 214.9s 
Perf. Ratio 1.6 0.80 2.07 

SD(Perf. Ratio) 0.13 0.31 0.07 
 

c) MOD11L2.005 

 Avg. TW Avg. TC Avg. TR 
Desktop 80.3s 14.9s 65.4s 

Azure Instance 151.5s 15.3s 136.1s 
Perf. Ratio 1.9 1.0 2.1 

SD(Perf. Ratio) 0.39 0.73 0.40 
 
 

In our experience, the time required for the reprojection tasks of different products can differ widely due to 
different characteristics of the source data. Thus we selected the 45 reprojection tasks from 3 different MODIS 
data products (15 tasks for each): MOD04L2, MOD06L2, and MYD11L2.005, to account for the variability 
across different data product characteristics. For each task, we measured its wall clock time (TW), which is the 

 Desktop Azure Instance 
 

Capacity 
CPU: Intel Core2Duo E6850 @ 3.0GHZ 
Memory: 4GB 
Hard Disk: 1TB SATA 
Network: 1Gbps Ethernet 
OS: Windows 7 RC Build7100 (32-bit) 

CPU: 1.5-1.7GHZ X64 equivalent processor 
Memory: 2GB 
Local Storage: 250GB 
Network: 100Mbps 
OS: Windows 2008 Server x64 (64-bit) 



period from when the Azure computing instance or the desktop machine starts processing the task to the time 
when it finishes the reprojection computation. We then broke down the total wall-clock time into two parts: 

• Communication time (TC). It is the time used for querying metadata in Azure tables and downloading 
source data files from the data repository in Azure blob storage to local disk storage.  

• Reprojection time (TR). It is the time used to perform reprojection computation on the downloaded source 
data files. 

Table III(a)-(c) show the average results of the execution of all 45 tasks on both the desktop machine and the 
Azure instance. Each table shows statistics for the 15 reprojection tasks from each data product. Avg. TW shows 
the average wall clock time (in seconds) for a single task across all 15 tasks. Similarly, Avg. TC and Avg. TR show 
the average communication time and reprojection computation time across all 15 tasks. The first two rows in each 
table show the comparison of the results for the desktop machine and the Azure instance. The Perf. Ratio shows 
the performance ratio of the two as calculated by Azure Instance Time / Desktop Time. Finally, SD(Perf. Ratio) 
shows the standard deviation of the performance ratio across all 15 tasks.  

It is not surprising to see that, in all cases, the task execution time as indicated by TW of the desktop machine is 
always less than that of the Azure instance by a factor of 1.6~2.1. This is because the raw hardware capacity of the 
desktop machine is much better than the Azure instance. 

The communication time results illustrate some interesting behaviors. First, the Azure storage communication 
performance ratios of Azure instance and desktop machine are not consistent across all 3 data products. Second, 
the standard deviation of communication performance ratio is very large and can account for as much as 70% of 
the performance ratio itself. To further demonstrate this behavior in detail, Table IV shows a detailed list of 
communication time measurements from all 15 tasks in MYD11L2.005 product, which has the largest standard 
deviation as of the percentile of the performance ratio itself. As we can see, the communication performance ratios 
for each of the 15 tasks present a large factor of randomness. This indicates that the communication time is mostly 
affected by the highly inconsistent response time and data transfer rate on the Azure Storage Servers, rather than 
the Internet connection bandwidth. Furthermore, although the Azure instances are running in the same datacenter 
with the storage for our source data (which can be specified using the so-called Affinity Group), it seems these 
instances didn’t share any benefits from its internal network connection advantages because its performance is not 
even as good as a machine connected from outside the datacenter. 

On the other hand, the statistics on the reprojection computation time shows a much more consistent pattern, 
which indicates that the virtualized hardware resource capacity for each Azure instance is much more stable in 
application execution performance. 

TABLE IV.    COMMUNICATION TIME FOR ALL 15 TASKS IN MYD11L2.005 (UNIT: SECONDS) 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Desktop 12 16 14 18 19 9 21 16 7 27 14 6 23 6 16 

Azure Instance 7 18 17 18 17 16 16 19 16 20 19 5 18 19 5 
Perf. Ratio 0.58 1.13 1.21 1.00 0.89 1.78 0.76 1.19 2.29 0.74 1.36 0.83 0.78 3.17 0.31 

 

6.2 Parallel Execution Performance and Scalability 
One of the main advantages of cloud computing is the high flexibility and scalability to provide on-demand 
computing resources. Our pipeline architecture is very flexible in terms of the ability to dynamically adapt to the 
computational requirements of different data processing requests. To see how the performance of our pipeline 
scales with the number of the computing instances, we measured the total processing time for running 1500 
reprojection tasks from each of the above 3 data products using different number of Azure instances. For each data 
product, we run the same 1500 tasks using 50, 100, and 150 Azure instances, and measure the total processing 
time for all tasks. We then estimated the speedups we got as compared to the capacity of a single Azure instance 
and that of our high-end desktop machine. Table V shows the total processing time (in hours) for each run. Azure 
pipeline runs with 50, 100, and 150 instances are all measured from real tests, while the single Azure instance and 
desktop processing time is only an estimation, since it would take days to finish the whole run. To calculate the 
single Azure instance and desktop processing time for the 1500 tasks for each data product, we first get the 
average wall clock time for a single task as measured in Section 6.1, and then multiply it by 1500. 

From the table we can calculate the speedups for running multiple Azure instances over a single instance and a 
single desktop machine. The results are shown in Figure 3. The “VMs” in the figure indicates the Azure 
computing instances. As the figure shows, the performance of our pipeline scales almost lineally with the number 
of instances, and although each Azure instance has a moderate capacity as compared to the high-end desktop 



machine, in best case we could still get a nearly 90x speedup over a single desktop when running tasks for 
MOD06L2 with 150 Azure instances. As compared to the performance of a single Azure instance, we almost get 
the same times of speedups as the number of instances in all cases except for product MOD04_L2. 

TABLE V.    PROCESSING TIME FOR 1500 TASKS (UNIT: HOURS) 

 MOD04_L2 MOD06_L2 MYD11_L2.005 
Desktop 16.29 72.62 33.45 

Single instance 34.21 116.19 63.56 
50 instances 0.76 2.25 1.12 
100 instances 0.40 1.20 0.61 
150 instances 0.30 0.85 0.44 

 

 
 

Figure 3. Performance speedups using parallel instances 

6.3 Scalability of the Azure Storage Service 
Since there are many Azure instances running concurrently in the pipeline, they will frequently perform 

concurrent operations such as table queries, queue/dequeue operations, blob uploads/downloads, etc. thus we 
expect that the number of concurrent working instances in Azure will impact the performance of Azure Storage 
Services. To measure how well the Azure Storage Services scale with the number of concurrent instance 
requests, for each of the reprojection runs on product MOD06L2 in Section 6.2, we also accumulated the total 
Azure storage service communication time and the computation time for all 1500 tasks. We choose product 
MOD06L2 for our measurements because reprojection tasks for this product have largest download size 
requirement (~100MB for each task), and thus can present the severest concurrent operation request behaviors 
for Azure Storage Services.  

Figure 4 shows the accumulated reprojection time and communication time for all 1500 tasks for MOD06L2 
product. With 50 Azure instances running concurrently, the total Azure Storage Service communication time is a 
little less than 20 hours, while it becomes more than 27 hours when 150 instances are running concurrently. This 
result indicates that the scalability is not so free when it comes to the Azure cloud storage service, and the 
latency can get significantly larger when there are many concurrent data requests to the same queue, table, and 
blob item in the storage. 

 
Figure 4.  Total Reprojection time VS. Communication time 



7. Conclusion 
In this paper, we have described how we leveraged cloud computing to create a MODIS satellite data reprojection 
and reduction pipeline. We are currently undergoing user studies involving biometeorologists, in part to validate 
the results from our first processing of a single year covering the whole US continent. We expect to launch the 
remaining 10 year computation for the US shortly and look forward to global scale. With the flexibility and 
scalability provided by the cloud computing model, scientists who previously only worked on their desktop 
machines can now access powerful computing resources and to scale their research scopes in a cost-effective way. 
Our implementation of the MODIS data processing pipeline in Windows Azure has further demonstrated the 
potential of using cloud computing to lower a series of data entry barriers for eScience by leveraging the scalable 
storage and computing services. 

Through the design and implementation of this scientific application, we have first-hand experience with a 
number of issues for the broader eScience community. Commercial cloud computing infrastructures today are, to 
a large extent, running behind the scene. This infrastructure transparence makes it more difficult for cloud 
application developers to diagnose problems as they occur. In our experience, troubleshooting problems in cloud 
applications is not only time-consuming, but sometimes can also be very tricky. As a result, managing code 
dependencies took a noticeable part of our development time. Local simulation and debugging for cloud 
applications is another remaining challenge. While Windows Azure provides a local simulation environment for 
cloud application development, there are many cases that applications will run into different behaviors when the 
application is deployed, which is due to the heterogeneity of the underlying software and hardware environments 
where the cloud applications are actual running. Therefore, we believe the transparency of the underlying cloud 
infrastructure is currently a general challenge for cloud application developers and has inevitably raised the 
application development and deployment barrier. 

A notable aspect of our current pipeline is that it does not leverage an existing MapReduce framework such as 
Hadoop [20] or Dryad [21]. The reason for this is two-fold. First, none of these frameworks are currently 
supported in Windows Azure Platform. As of the time of this paper, Windows Azure has just been commercially 
released, and it is expected that more frameworks such as Dryad will be supported in near future. Second, we have 
found it "natural" to use Azure's general queue-based task model, which is quite different than a MapReduce 
formulation. With this loosely-coupled computation model, it will be easy for us to extend our current pipeline 
architecture to incorporate more complex computational and data flows. Actually we are exactly doing this now as 
we are adding a new stage, which is a second reduction stage to the current 3-stage pipeline. It is not clear at this 
time how this particular problem would/could use a MapReduce formulation. Nevertheless, we are still interested 
to see how our pipeline architecture could be implemented on an existing MapReduce framework. Thus, it 
remains to be our future work. 

In conclusion, as we have demonstrated in our work, cloud computing has the great potential to eliminate or 
significantly lower many resource barriers and data barriers that have been existing for a long time in eScience 
domain. It provides a cost-effective, highly scalable and flexible solution for those large-scale, compute- and data-
intensive eScience researches. At the same time, at this early stage of cloud computing, some general challenges 
remain to be overcome and tradeoffs need to be made by scientists and developers when consider moving their 
applications to the cloud. 
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