

Roger Barga
Senior Architect

Catharine van Ingen
Partner Architect

Microsoft Corporation

The Data Flood:
Science and the 4th Paradigm

Small keys open big doors
Turkish Proverb

• Thousand years ago – Experimental Science

• Description of natural phenomena

• Last few hundred years – Theoretical Science

• Newton‟s Laws, Maxwell‟s Equations…

• Last few decades – Computational Science

• Simulation of complex phenomena

• Today – Data-Intensive Science

• Scientists overwhelmed with data sets

from many different sources

• Data captured by instruments

• Data generated by simulations

• Data generated by sensor networks

• eScience is the set of tools and technologies

to support data federation and collaboration

• For analysis and data mining

• For data visualization and exploration

• For scholarly communication and dissemination

2

2

2
.

3

4

a

cG

a

a





















Jim Gray 2007

http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif

• We‟re living in a perfect storm of
remote sensing, cheap ground-based
sensors, internet data access, and
commodity computing

• Yet deriving and extracting the variables
needed for science remains problematic
• Specialized knowledge for algorithms,

internal file formats, data cleaning, etc, etc

• Finding the right needle across the
distributed heterogeneous and very rapidly
growing haystacks

• Rasters: time series raster data (PBs to TBs)
• Over some period of time at some time frequency at some

spatial granularity over some spatial area
• Can be “cut out” to create virtual sensors
• Often requires specialized skills and use esoteric formats
• Similar, but dirtier, than model output

• Sensors: time series point data (TBs to GBs)
• Over some period of time at some time frequency at some spatial

location.
• (Re)calibrations, gaps and errors are a way of life because

batteries die and sensors fail
• Gap filling algorithms key as regular time series enable more

analyzes

• Ancillary Data: everything else (KBs to maybe GBs)
• “constants” (latitude), intermittent measurements (water samples),

events (algal blooms), descriptions (“shaded”)
• Hard won and often requires science judgment
• Analysis usage patterns vary widely

US-HO1

lat. = 45.2041

biome = ENF

2003

Stormflows

Dam Releases

http://www.cosee-ne.net/edu_project_1/images/PonarGrab.JPG

• Provenance and trust widely varies

• Data acquisition, early processing, and reporting ranges from a
large government agency to individual scientists.

• Smaller data often passed around in email; big data downloads
can take days (if at all)

• Data sharing concerns and patterns vary

• Open access followed by (non-repeatable and tedious) pre-
processing

• True science ready data set but concerns about misuse,
misunderstanding particularly for hard won data.

• Computational tools differ.

• Not everyone can get an account at a supercomputer center

• Very large computations require engineering (error handling)

• Space and time aren‟t always simple dimensions

Complex shared detector Simple instrument (if any)

Complex and Heavy process by experts Ad hoc observations and models

KB

PB

GB

TB

Science happens when PBs, TBs, GBs, and KBs can be mashed up simplyScience happens when PBs, TBs, GBs, and KBs can be mashed up simply

http://nsidc.org/daac/index.html
https://lpdaac.usgs.gov/

• Barriers to Science:
• Resource: compute, storage, networking, visualization

capability

• Complexity: specific cross-domain knowledge

• Tedium: repetitive data gathering or preprocessing tasks

• With Cloud Computing, we can:
• marshal needed storage and compute resources on demand

without caring or knowing how that happens

• access living curated datasets without having to find, educate,
and reward a private data curator

• run key common algorithms as Software as a Service without
having to know the coding details or installing software

• grow a given collaboration or share data and algorithms across
science collaborations elastically

Democratizing science analysis by fostering sharing and reuse

Where do you

want your data?

Supercomputer

users

Small

cluster

owners

The

Rest

of

Us

Azure and Cloud Computing

Ideas rose in clouds; I felt them collide until pairs interlocked, so to
speak, making a stable combination.
Henri Poincare

• A model of computation and data storage
based on “pay as you go” access to
“unlimited” remote data center capabilities

• A cloud infrastructure provides a framework to
manage scalable, reliable, on-demand access
to applications

• A cloud is the “invisible” backend to many of
our mobile applications

• Historical roots in today‟s Internet apps
• Search, email, social networks

• File storage (Live Mesh, Mobile Me, Flickr, …)

Infrastructure as a

Service

Platform as a

Service

Software as a

Service

Saas: Delivery of

software from the

cloud to the

desktop

IaaS: Provide a

data center and a

way to host client

VMs and data

PaaS: Provide a

programming

environment to

build and

manage the

deployment of

a cloud

application

http://open.eucalyptus.com/

• Seamless interaction is crucial
• Cloud is the lens that magnifies the power of desktop

• Persist and share data from client in the cloud

• Analyze data initially captured in client tools, such as Excel
• Analysis as a service (SQL, Map-Reduce, R/MatLab).

• Data visualization generated in the cloud, display on client

• Provenance, collaboration, other core services…

• Purpose-built data centers to host
containers at large scale
 Cost $500 million, 100,000 square

foot facility (10 football fields)

• 40 foot shipping containers can
house as many as 2,500 servers
 Density of 10 times amount of

compute in equivalent space in
traditional data center

• Deliver an average PUE of 1.22
 Power Usage Effectiveness

benchmark from The Green Grid™
consortium on energy efficiency

Data Center Infrastructure

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

The Microsoft Cloud

Server Container Deployment

Quincy, WA Chicago, IL San Antonio, TX Dublin, Ireland Generation 4 DCs

~100 Globally Distributed Data Centers

Optimized

Hypervisor

Host Virtual
Machine (VM)

Guest
Virtual
Machines
(up to 7)

Each Guest VM has
• 1 to 8 CPU cores
• 1.6 GHz x64
• Memory: 1.7-14.2 GB
• Network: 100+ Mbps
• Local: 500GB – 2 TB

Configured with
• .NET framework
• IIS 7.0
• 64-bit Windows Server

2008 Enterprise
• Azure platform

Compute

Storage

Fabric

Guest
VMs

Web Role Worker Role

Agent Agent

main()
{ … }

Load
Balancer

HTTP

IIS

ASP.NET, WCF,
etc.

• Web Role provides client access web presence

• Worker Role does all heavy lifting

• Each can scale independently

Guest
VMs

VM Role

Your
VM

Queue

Using queues for reliable messaging

Web Role

ASP.NET, WCF,
etc.

Worker Role

main()
{ … }

1) Receive work

2) Put work in
queue

3) Get work
from queue

4) Do
work

To scale, add more of either

• Queues are the application glue for loosely coupled applications
• Link application components, enabling each to scale independently

• Resource allocation, different priority queues and backend servers

• Mask faults in worker roles through reliable messaging and retries

• Use Inter-role communication for performance
• TCP communication between role instances

Azure applications can
use native storage or
SQL Azure

Application state is
kept in storage
services, so worker
roles can replicate as
needed

Blobs: large,
unstructured data
(audio, video, etc)

Tables: simply structured
data, accessed using
ADO.NET Data Services

Queues: serially accessed
messages or requests, allowing
web-roles and worker-roles to
interact

What the „Value Add‟ ?

A runtime platform that is scalable and available

• Services are always running, rolling upgrades/downgrades

• Failure of any node is expected

• Failure of application code is expected, automatic recovery

• Services can grow to be large, provide state management that
scales automatically

• Handle dynamic configuration changes due to load or failure

• Manage data center hardware: from CPU cores, nodes, rack, to
network infrastructure and load balancers.

• Owns all data center hardware

• Uses inventory to host services

• Deploys applications to free
resources

• Maintains the health of those
applications

• Maintains health of hardware

• Manages the service life cycle
starting from bare metal

Fabric Controller

Fault Domains

Purpose: Avoid single points of failures

Allocation is across
fault domains

Fault domains

Update Domains

Purpose: ensure the service stays up
while undergoing an update

• Unit of software/configuration update

• Example: set of nodes to update

• Used when rolling forward or backward

• Developer assigns number required by each role

• Example: 10 front-ends, across 5 update
domains

Allocation is across
update domains

Update domains

Push-button Deployment

Step 1: Allocate nodes

• Across fault domains

• Across update domains

Step 2: Place OS and role images on nodes

Step 3: Configure settings

Step 4: Start Roles

Step 5: Configure load-balancers

Step 6: Maintain desired number of roles

• Failed roles automatically restarted

• Node failure results in new nodes automatically allocated

Allocation across fault
and update domains

Load-
Balancers

AzureBLAST :
Biological Sequence Comparison in the Cloud

In 15 years we'll have all the sequence, a list of the genes everyone
has in common and those that differ among people. We know only
something like a tenth of 1 percent of the sequence at the moment.
Walter Gilbert

BLAST (Basic Local Alignment Search Tool)

• The most important software in bioinformatics

• Identify similarity between bio-sequences

Computationally intensive

• Large number of pairwise alignment operations

• A normal BLAST running could take 700 ~ 1000 CPU hours

• Size of sequence databases growing exponentially
• GenBank doubled in size in about 15 months.

For most biologists, two choices to run large jobs

• Build a local cluster

• Submit jobs to NCBI or EBI

• Long job queuing time

It is easy to parallelize BLAST

• Segment the input

• Segment processing (querying) is pleasingly parallel

• Segment the database (e.g., mpiBLAST)

• Needs special result reduction processing

Large volume data

• A normal Blast database can be as large as 10GB

• 100 nodes means the peak storage bandwidth could reach to 1TB

• The output of BLAST is usually 10-100x larger than the input

• Parallel BLAST engine on Azure

• Query-segmentation data-parallel pattern

• split the input sequences

• query partitions in parallel

• merge results together when done

• Follows the general suggested application model

• Web Role + Queue + Worker

• With three special considerations

• Batch job management

• Task parallelism on an elastic Cloud

• Large data-set management

Wei Lu, Jared Jackson, and Roger Barga, AzureBlast: A Case Study of Developing Science Applications on the Cloud, in Proceedings of the 1st Workshop

on Scientific Cloud Computing (Science Cloud 2010), Association for Computing Machinery, Inc., 21 June 2010

http://research.microsoft.com/apps/pubs/default.aspx?id=122754
http://research.microsoft.com/apps/pubs/default.aspx?id=122754

A simple Split/Join pattern

Leverage multi-core of one instance
• argument “–a” of NCBI-BLAST

• 1,2,4,8 for small, middle, large, and extra large instance size

Task granularity
• Large partition  load imbalance

• Small partition  unnecessary overheads
• NCBI-BLAST overhead

• Data transferring overhead.

Best Practice: test runs to profiling and set size to mitigate the overhead

Value of visibilityTimeout for each BLAST task,
• Essentially an estimate of the task run time.

• too small  repeated computation;

• too large  unnecessary long period of waiting time in case of the instance failure.

Best Practice:

• Estimate the value based on the number of pair-bases in the partition and test-runs

• Watch out for the 2-hour maximum limitation

BLAST task

Splitting task

BLAST task

BLAST task

BLAST task

…

Merging
Task

Task size vs. Performance

• Benefit of the warm cache effect

• 100 sequences per partition is the best
choice

Instance size vs. Performance

• Super-linear speedup with larger size
worker instances

• Primarily due to the memory capability.

Task Size/Instance Size vs. Cost

• Extra-large instance generated the best
and the most economical throughput

• Fully utilize the resource

Web

Portal

Web

Service

Job registration

Job Scheduler

Worker

Worker

Worker

Global

dispatch

queue

Web Role

Azure Table

Job Management Role

Azure Blob

Database

updating Role

…

Scaling Engine

Blast databases,

temporary data, etc.)

Job Registry
NCBI databases

BLAST task

Splitting task

BLAST task

BLAST task

BLAST task

…

Merging Task

ASP.NET program hosted by a web role
instance
• Submit jobs

• Track job‟s status and logs

Authentication/Authorization based on
Live ID

The accepted job is stored into the job
registry table
• Fault tolerance, avoid in-memory states

Web
Portal

Web
Service

Job registration

Job Scheduler

Job Portal

Scaling Engine

Job Registry

R. palustris as a platform for H2 production
Eric Shadt, SAGE Sam Phattarasukol Harwood Lab, UW

Blasted ~5,000 proteins (700K sequences)
• Against all NCBI non-redundant proteins: completed in 30 min

• Against ~5,000 proteins from another strain: completed in less than 30 sec

AzureBLAST significantly saved computing time…

Discovering Homologs
• Discover the interrelationships of known protein sequences

“All against All” query
• The database is also the input query

• The protein database is large (4.2 GB size)
• Totally 9,865,668 sequences to be queried

• Theoretically, 100 billion sequence comparisons!

Performance estimation
• Based on the sampling-running on one extra-large Azure instance

• Would require 3,216,731 minutes (6.1 years) on one desktop

One of biggest BLAST jobs as far as we know
• This scale of experiments usually are infeasible to most scientists

• Allocated a total of ~4000 instances
• 475 extra-large VMs (8 cores per VM), four datacenters, US (2), Western and North Europe

• 8 deployments of AzureBLAST
• Each deployment has its own co-located storage service

• Divide 10 million sequences into multiple segments
• Each will be submitted to one deployment as one job for execution

• Each segment consists of smaller partitions

• When load imbalances, redistribute the load manually

5

0

62
6

2
6

2 6

26

2
5

0
62

• Total size of the output result is ~230GB

• The number of total hits is 1,764,579,487

• Started at March 25th, the last task completed on April 8th (10 days compute)

• But based our estimates, real working instance time should be 6~8 day

• Look into log data to analyze what took place…

5

0

62
6

2
6

2 6

26

2
5

0
62

A normal log record should be

Otherwise, something is wrong (e.g., task failed to complete)

3/31/2010 6:14 RD00155D3611B0 Executing the task 251523...

3/31/2010 6:25 RD00155D3611B0 Execution of task 251523 is done, it took 10.9mins

3/31/2010 6:25 RD00155D3611B0 Executing the task 251553...

3/31/2010 6:44 RD00155D3611B0 Execution of task 251553 is done, it took 19.3mins

3/31/2010 6:44 RD00155D3611B0 Executing the task 251600...

3/31/2010 7:02 RD00155D3611B0 Execution of task 251600 is done, it took 17.27 mins

3/31/2010 8:22 RD00155D3611B0 Executing the task 251774...

3/31/2010 9:50 RD00155D3611B0 Executing the task 251895...

3/31/2010 11:12 RD00155D3611B0 Execution of task 251895 is done, it took 82 mins

North Europe Data Center, totally 34,256 tasks processed

All 62 compute nodes lost tasks

and then came back in a group.

This is an Update domain

~30 mins

~ 6 nodes in one group

North Europe Data Center, totally 34,256 tasks processed

• Domain Upgrade takes a while (~6 hours), and

will degrade the throughput.

• Try not to rely on the barrier on instances

• Avoid in-memory session

Job hung for 3 days until it was

killed; because

Job Scheduler restarted, in-

memory state lost

35 Nodes experience blob

writing failure at same

time

West Europe Datacenter; 30,976 tasks are completed, and job was killed

A reasonable guess: the

Fault Domain is working

More like a rack

disconnection

Sounds a system update

twice tasks

are lost

West Europe Datacenter; 30,976 tasks are completed, and job was killed

Job hung for 1.5 days until it

was killed; 3000 task are not

processed due to the 7-day

message life time.

West Europe Datacenter; 30,976 tasks are completed, and job was killed

• Machine gets restarted for various reasons

• Keep running even when exceptions happened

• Watch out the 7-day message life time

• An auto-scaling feature can save money

Task 56823 needs 8 hours to complete; it was re-

executed by 8 nodes due to the

2-hour max value of the visibliblityTimeout of a

message

Two-day very low system

throughput due to some long-

tail tasks

North Europe Data center, 2058 tasks

The bounding box is what

we were actually charged.

The ideal case, but currently Azure doesn‟t support

turning specific node off

One feasible solution Dynamic Scaling:

Kill the running job and re-start a new job for remaining

tasks with scaled-in instances

• Understand problem complexity if

possible, A test running is quite useful

• If it is impossible (e.g., BLAST), leveraging

the elasticity of cloud to save the cost

MODISAzure :
Computing Evapotranspiration (ET) in The Cloud

You never miss the water till the well has run dry
Irish Proverb

ET = Water volume evapotranspired (m3 s-1 m-2)

Δ = Rate of change of saturation specific humidity with air temperature.(Pa K-1)

λv = Latent heat of vaporization (J/g)

Rn = Net radiation (W m-2)

cp = Specific heat capacity of air (J kg-1 K-1)

ρa = dry air density (kg m-3)

δq = vapor pressure deficit (Pa)

ga = Conductivity of air (inverse of ra) (m s-1)

gs = Conductivity of plant stoma, air (inverse of rs) (m s-1)

γ = Psychrometric constant (γ ≈ 66 Pa K-1)

Estimating resistance/conductivity across a

catchment can be tricky

• Lots of inputs : big reduction

• Some of the inputs are not so simple

𝐸𝑇 =
∆𝑅𝑛 + 𝜌𝑎 𝑐𝑝 𝛿𝑞 𝑔𝑎

(∆ + 𝛾 1 + 𝑔𝑎 𝑔𝑠)𝜆𝜐

Penman-Monteith (1964)

Evapotranspiration (ET) is the release of water to the atmosphere by evaporation from
open water bodies and transpiration, or evaporation through plant membranes, by
plants.

NASA MODIS

imagery source

archives

5 TB (600K files)

FLUXNET curated

sensor dataset

(30GB, 960 files)

FLUXNET curated

field dataset

2 KB (1 file)

NCEP/NCAR

~100MB

(4K files)

Vegetative

clumping

~5MB (1file)

Climate

classification

~1MB (1file)

20 US year = 1 global year

Data collection (map) stage

• Downloads requested input
tiles from NASA ftp sites

• Includes geospatial lookup
for non-sinusoidal tiles that
will contribute to a
reprojected sinusoidal tile

Reprojection (map) stage

• Converts source tile(s) to
intermediate result
sinusoidal tiles

• Simple nearest neighbor or
spline algorithms

Derivation reduction stage

• First stage visible to scientist

• Computes ET in our initial
use

Analysis reduction stage

• Optional second stage
visible to scientist

• Enables production of
science analysis artifacts
such as maps, tables, virtual
sensors

Reduction #1

Queue

Source

Metadata

AzureMODIS

Service Web Role Portal

Request

Queue

Scientific

Results

Download

Data Collection Stage

Source Imagery Download Sites

. . .

Reprojection

Queue

Reduction #2

Queue

Download

Queue

Scientists

Science
results

Analysis Reduction StageDerivation Reduction Stage Reprojection Stage

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx

• ModisAzure Service is the Web
Role front door
• Receives all user requests

• Queues request to appropriate
Download, Reprojection, or
Reduction Job Queue

• Service Monitor is a dedicated
Worker Role
• Parses all job requests into tasks –

recoverable units of work

• Execution status of all jobs and
tasks persisted in Tables

<PipelineStage>

Request

…
<PipelineStage>JobStatus

Persist
<PipelineStage>Job Queue

MODISAzure Service

(Web Role)

Service Monitor

(Worker Role)

Parse & Persist
<PipelineStage>TaskStatus

…

Dispatch

<PipelineStage>Task Queue

• All work actually done by a GenericWorker Worker Role

• Sandboxes science or other
executable

• Marshalls all storage from/to Azure
blob storage to/from local Azure
Worker instance files

Service Monitor

(Worker Role)

Parse & Persist
<PipelineStage>TaskStatus

GenericWorker

(Worker Role)

…

…

Dispatch

<PipelineStage>Task Queue

…

<Input>Data Storage

• Dequeues tasks created by the
Service Monitor

• Retries failed tasks 3 times

• Maintains all task status

• Manages application sandbox
• Ensures all application binaries such

as the MatLab runtime are installed
for “known” application types

• Stages all input blobs from Azure
storage to local files

• Passes any marshalled inputs to
uploaded application binary

• Stages all output blobs to Azure
storage from local files

• Preserves any marshalled outputs to
the appropriate Task table

• Simplifies desktop development
and cloud deployment

Storage separated by usage to simplify management policies

• Reduction results
• Older results can be

aged out over time

• A zip file blob is created
for each job to simplify
download

Source

Reprojection

Storage

Reduction

Storage

Metadata

Storage

• Original source image
download
• Can be deleted when all

dependent reprojections
complete

• Reprojection
results
• May include the

same target tile at
different spatial
resolution

• Metadata includes
geospatial lookup,
known application
library binaries, etc
• Necessary for service

function

• Never directly accessed
by scientist code

Reprojection Request

…

Service Monitor

(Worker Role)

ReprojectionJobStatus
Persist

Parse & Persist
ReprojectionTaskStatus

GenericWorker

(Worker Role)

…

Job Queue

…

Dispatch

Task Queue

Points to

…

ScanTimeList

SwathGranuleMeta

Reprojection Data

Storage

Each entity specifies a

single reprojection job

request

Each entity specifies a

single reprojection task (i.e.

a single tile)

Query this table to get

geo-metadata (e.g.

boundaries) for each swath

tile

Query this table to get the

list of satellite scan times

that cover a target tile

Swath Source

Data Storage

• It‟s not just nearest neighbor vs
aggregating spline and nadir vs oblique
pixels

h12v04 h13v04h11v04h10v04h09v04h08v04

h12v05h11v05h10v05h09v05h08v05

h11v06h10v06h09v06h08v06

Sinusoidal (equal

land area pixel)

projection tiles

across the US• Black pixels have no data
• Non-US land surface masked
• Vertical bands are gaps between swath tiles; these can be filled by spatial spline or other fit
• Day/night satellite paths can cause small temporal gaps; clouds cause large spatial and temporal

gaps; both must be filled by temporal fit or model result leveraging variables in other products

• White lines have no data
• Unable to find nearest neighbor at edges of sinusoidal tiles; most likely due to gap between satellite

swaths or (early) programming bug

• Processing only the layers of interest makes dramatic savings in compute and storage

Software as a Service means every scientist need not learn to write this code !

User Web Portal

(Web Role)

Job Request

…
Job Queue

Service Monitor

(Worker Role)

ReductionJobStatus Table

Persist

ReductionTaskStatus Table

…

Dispatch

Task Queue

Parse & Persist

GenericWorker

(Worker Role)

…

…

Points to

Sinusoidal Land

Source Storage

Reprojection Data

Storage

Reduction Result

Storage

Download

Link to Results

• The Web Portal Role, Service Monitor Role and 5 Generic Worker Roles are
deployed at most times
• 5 Generic Workers are sufficient for reduction algorithm testing and development ($20/day)

• Early results returned to scientist while deploying up to 93 additional Generic Workers; such
a deployment typically takes 45 minutes

• Deployment taken down when long periods of idle time are known

• Heuristic for scaling number of Generic Workers up and down

• Download stage runs in the deep background in all deployed generic worker
roles
• IO, not CPU bound so no competition

• Reduction tasks that have available inputs run preferentially to Reprojection
tasks
• Expedites interactive science result generation

• If no available inputs and a backlog of reprojection tasks, number of Generic Workers scale
up naturally until backlog addressed and reduction can continue

• Second stage reduction runs only after all first stage reductions have completed

• Computational costs
driven by data scale
and need to run
reduction multiple
times

• Storage costs driven
by data scale and 6
month project
duration

• Small with respect to
the people costs even
at graduate student
rates !

Reduction #1

Queue

Source

Metadata

Request

Queue

Scientific

Results

Download

Data Collection Stage

Source Imagery Download Sites

. . .

Reprojection

Queue

Reduction #2

Queue

Download

Queue

Scientists

Analysis Reduction StageDerivation Reduction Stage Reprojection Stage

400-500 GB

60K files

10 MB/sec

11 hours

<10 workers

$50 upload

$450 storage

400 GB

45K files

3500 hours

20-100

workers

5-7 GB

5.5K files

1800 hours

20-100

workers

<10 GB

~1K files

1800 hours

20-100

workers

$420 cpu

$60 download

$216 cpu

$1 download

$6 storage

$216 cpu

$2 download

$9 storage

AzureMODIS

Service Web Role Portal

Total: $1420

Encouraging science results lead to
changing resource needs
• Fine scale computation expanded to cover

more of the globe: 2x compute
requirements and 2x (transient) storage
requirements

• Lower resolution global computation added:
.5x compute requirements and 2x (transient)
storage and higher IOP/cpu reprojection

• Now underway: geo-spatial validation with
yearly aggregate: shifts reduction to IO
intensive

Expanding

to non-US

Lower

resolution

US years

3-10

Source tile

garbage

collection

Summary

I can see clearly now, the rain has gone. I can see all obstacles in my way.
Johnny Nash

• Clouds are the largest scale computer centers ever constructed and have the

potential to be important to both large and small scale science problems.

• Clouds suitable for “loosely coupled” data parallel applications, but tightly

coupled low-latency applications perform poorly on clouds today.

• Clouds as amplifier for familiar client tools and on premise compute.

• Clouds exploit economies of scale, healthy commercial competition, and an

active research community.

• Impedance mismatch between science apps and today‟s cloud platforms.

• Long running tasks, task diversity

• Performance reliability much different (design for failure)

• Provide valuable fault tolerance and scalability abstractions

• Science and algorithm debugging benefit from the same
infrastructure as both need to scale up and down
• Debugging an algorithm on the desktop isn‟t enough – you have to debug in the

cloud too

• Whenever running at scale in the cloud, you must reduce down to the desktop to
understand the results

• Putting all your eggs in the cloud basket means watching that
basket
• Cloud scale resources often mean you still manage small numbers of resources: 100 instances

over 24 hours = $288 even if idle

• Where is the long term archive for any results ?

• Azure is a rapidly moving target and unlike the Grid
• Commercial cloud backed by large commercial development team

• Bake in the faults for scaling and resilience

Microsoft Research
• Dan Reed
• Tony Hey
• Dennis Gannon
• David Heckerman
• Nelson Araujo
• Dan Fay
• Jared Jackson
• Wei Liu
• Jaliya Ekanayake
• Simon Mercer
• Yogesh Simmhan
• Michael Zyskowski

Berkeley Water Center, University of California,
Berkeley, Lawrence Berkeley Laboratory

• Deb Agarwal
• Dennis Baldocchi
• Jim Hunt
• Monte Goode
• Susan Hubbard
• Keith Jackson
• Rebecca Leonardson (student)
• Carolyn Remick

University of Virginia
• Marty Humphrey
• Norm Beekwilder
• Jie Li (student)

Indiana University
• You-Wei Cheah (student)

Fluxnet Collaboration
• Dennis Baldocchi
• Youngryel Ryu (postdoc)
• Dario Papale (CarboEurope)
• Markus Reichstein (CarboEurope)
• Alan Barr (Fluxnet-Canada)
• Bob Cook
• Dorothea Frank
• Susan Holladay
• Hank Margolis (Fluxnet-Canada)
• Rodrigo Vargas (postdoc)

Ameriflux Collaboration
• Beverly Law
• Tom Boden
• Mattias Falk
• Tara Hudiburg (student)
• Hongyan Luo (postdoc)
• Gretchen Miller (student)
• Lucie Ploude (student)
• Andrew Richardson
• Andrea Scheutz (student)
• Christophe Thomas http://www.fluxdata.org

http://azurescope.cloudapp.net/

http://research.microsoft.com/cloud

http://www.fluxdata.org/
http://azurescope.cloudapp.net/
http://research.microsoft.com/cloud

